
WHMCS | Provisioning Module Documentation 1

WHMCS Provisioning Module Docs

Last Updated: 8
th

 July 2011

WHMCS | Provisioning Module Documentation 2

Contents

Page Heading

3 Introduction

4 Getting Started

5 Supported Functions

8 Module Parameters

10 Core Module Functions

11 Client Area Output

13 Custom Functions

15 Additional Client Area Pages

16 The UsageUpdate Function

17 Admin Services Tab

18 Database Queries

20 Additional Resources

WHMCS | Provisioning Module Documentation 3

Introduction

Provisioning Modules, also referred to as Product or Server Module, allow you to create

modules to allow for the provisioning and management of products & services.

The core functionality of a module is for creating, suspending, unsuspending & terminating

of products as various events occur such as new orders being paid for, items becoming

overdue, overdue invoices being paid & cancellations being requested.

However a module in WHMCS can do much more than that, including automated password

resets, upgrades/downgrades, renewals, admin based links, client area output, and more via

custom functions.

Other types of modules that can be created in WHMCS are Payment Gateways, Domain

Registrars and Admin Addon Modules so if you’re looking to create one of those then you

need alternative documentation available from

http://docs.whmcs.com/Developer_Resources

So if you’re still with us… let’s get started!

WHMCS | Provisioning Module Documentation 4

Getting Started

Naming Conventions

All modules must be given a filename that consists of a single word, and all lowercase

letters.

Modules reside at a path of /modules/servers/filename/filename.php

Within the module itself, all functions are prefixed with the module filename, followed by

an underscore, and then the function name. For example if your module was called

“mymodule” the create function would be named as “mymodule_CreateAccount”.

The ConfigOptions Function

The only required function of every provisioning module is the ConfigOptions function. This

is what defines the options that can be set on a per product basis when assigning a product

to this module. This is often used for things like Package Names, Resource Limits, etc…

The supported field types are:

• Text

• Dropdown

• Password

• Yesno

Text and password fields can be given a “Size” parameter to define the length of the field,

while dropdown fields require a comma separated list of options in the “Options”

parameter.

The sample module template included in the dev kit includes an example of defining each of

the supported field types.

Note: There is a limit of a maximum of 24 config options for a module.

WHMCS | Provisioning Module Documentation 5

Supported Functions

What follows here is a brief overview of all the possible functions that a product

provisioning module in WHMCS can contain. All functions within a module are optional and

can be omitted from the module if they don’t apply. Within the code itself, all functions are

prefixed with the module filename, followed by an underscore, and then the function name

as shown in bold in these descriptions.

CreateAccount

This function is called when a new product is due to be provisioned. This can be

invoked automatically by WHMCS upon checkout or payment for a new order, or

manually by an admin user from the Products/Services tab under a clients profile

within the admin area.

SuspendAccount

This function is called when a suspension is requested. This is invoked automatically

by WHMCS when a product becomes overdue on payment, or can be called

manually by admin user.

UnsuspendAccount

This function is called when an unsuspension is requested. This is invoked

automatically upon payment of an overdue invoice for a product.

TerminateAccount

This function is called when a termination is requested. This can be invoked

automatically for long overdue products if enabled (auto termination is disabled by

default in Setup > Automation Settings) or requested manually by an admin user.

Renew

This function is called each time a renewal invoice for a product is paid.

WHMCS | Provisioning Module Documentation 6

ChangePassword

This function is called when a client requests a password change from the client

area. For this option to show up this function must be declared in the module, the

status of the product must be active. Admins can also invoke this command from the

admin area.

ChangePackage

This function is used for upgrading and downgrading of products. This function will

be called automatically when an upgrade or downgrade order placed by the client is

paid for, or can be invoked manually by admin users from the product management

pages. This same function is called for upgrades and downgrades of both products

and configurable options.

ClientArea

This function can be used to define module specific client area output. It accepts a

return of HTML for display on the product details page of the client area. The output

can alternatively be specified via a template file within the module folder named

“clientarea.tpl” to allow for end user customisation. This function is discussed in

more detail later on in the docs.

AdminArea

This function is used to define HTML code to be displayed within the admin area

server configuration page (Setup > Servers) and is commonly used to provide an

automated shortcut/login link to the server control panel being integrated with.

LoginLink

This function can be used to define HTML code used to link specifically to the

customers account within a servers control panel. It is displayed on the product

management page within the admin area if defined and must be an HTML output or

link (no forms).

WHMCS | Provisioning Module Documentation 7

ClientAreaCustomButtonArray

This function can be used to define custom functions that your module supports that

customers are allowed to invoke and run from the client area. These functions can

perform actions or product page output in the clientarea. Some example usages for

this are to provide product management pages, bandwidth reporting pages, etc…

AdminCustomButtonArray

This function can be used to define custom functions that your module supports,

similar to the above, but that admin users are allowed to run. This can contain more

functions than the client area is allowed.

UsageUpdate

This function is used to perform a daily import of the disk and bandwidth usage for

accounts from a server. The data imported is then used to display the usage stats

both within the client and admin areas of WHMCS, and also in disk and bandwidth

overage billing calculations if enabled for a product.

AdminServicesTabFields

This function can be used to define additional fields and output to be displayed on

the admin product management pages.

AdminServicesTabFieldsSave

This function is used in conjunction with the above to handle the values submitted in

any custom fields when a save request is submitted.

WHMCS | Provisioning Module Documentation 8

Module Parameters

Every module function is passed the same set of parameters. These variables provide

information about the specific product/service the module command is being invoked for,

along with the settings from the product itself as defined in the product configuration.

Var Name Description

serviceid the unique ID of the service

Database Field: tblhosting.id

pid the product ID that the service is assigned to

Database Field: tblproducts.id

serverid the server ID that the service is assigned to

Database Field: tblservers.id

domain the domain entered by the customer when ordering

Database Field: tblhosting.domain

username the username generated for the service (defaults to first 8 letters of

the domain)

Database Field: tblhosting.username

password the password generate for the service (10 char randomly generated

on first creation consisting of letters & numbers, both upper &

lowercase)

Database Field: tblhosting.password

producttype the product type which can be one of sharedhosting, reselleraccount,

server or other

moduletype the module name being called (will match filename of module)

configoptionX with X being from 1 to 24, these fields contain all the module settings

for the product in the order defined in the ConfigOptions function of

the module

clientsdetails This variable contains a sub-array of all the clients details for the client

who owns the service in question. This contains things like firstname,

lastname, email, address1, country, etc…

customfields this variable contains a sub-array of all the custom fields defined for

the product, with the key being the custom field name -

$params[‘customfields’][‘Field Name’]

configoptions This variable contains a sub-array of all the configurable options

defined for the product, again with the key being the option name in

this case - $params[‘configoption’][‘Option Name Here’]

server true/false to define if the product is assigned to a server

serverip the IP Address of the selected server

serverhostname the Hostname of the selected server

serverusername the Username of the selected server

serverpassword the Password of the selected server

serveraccesshash the Access Hash of the selected server

serversecure true/false to define if Use SSL is enabled in the Server Configuration

WHMCS | Provisioning Module Documentation 9

Config Options

Config options (not to be confused with Configurable Options) are the module settings

defined on a per product basis. This are supplied as a numbered list, so the first option

would be $params[‘configoption1’] , the second $params[‘configoption2’], etc… The order

is defined by the order in which you specify the settings in the ConfigOptions function of the

module.

Custom Fields & Configurable Options

The values from any custom fields & configurable options are loaded and passed into

modules as parameters so that they can be easily used. They are passed as an array with

the key being the name of the field or option.

For example if you created a custom field called “Username”, then that would be referenced

using $params[‘customfields’][‘Username’]

Similarly if you created a configurable option named “Disk Space”, then that would be

referenced using $params[‘configoptions’][‘Disk Space’]

WHMCS | Provisioning Module Documentation 10

Core Module Functions

The core module functions are the Create, Suspend, Unsuspend, Terminate, Renew,

ChangePassword and ChangePackage functions.

These 7 functions all operate in a very similar manner. They can all be invoked both

manually and automatically, and they are all expected to return either a success or error

response.

Response Handling

Each one of these functions after performing the actions they are required to, must either

return a success message or error response.

For a successful result the code must actually return the word “success” to end the function.

If WHMCS receives that it will know that the function completed as intended and continue

on that basis.

However, should the function fail, what you return should be a user understandable error

message, as it will be displayed directly to staff users.

Actions

When a function is successful, there are various actions that are performed as follows

Function Name Successful Events

CreateAccount Changes status to Active + Sends Product Welcome Email

SuspendAccount Changes status to Suspended

UnsuspendAccount Changes status to Active

TerminateAccount Changes status to Terminated

Renew None

ChangePassword Updates password in database

ChangePackage None

In addition to the above actions, admin users are given a confirmation of successful

functions completing, and errors in the case of them failing. If the functions were invoked

automatically such as on payment of a new order, then that notification can be in the form

of an email. And in the case of the ChangePassword function, any errors returned from that

function are also displayed to end users within the client area also.

WHMCS | Provisioning Module Documentation 11

Client Area Output

Another key function of a module is to give the client access to options within the client

area. This is done using the ClientArea function of a module.

Function vs Template

The ClientArea function within the modules PHP code can simply return HTML output to be

displayed within the product details view on the client side. However, another option for

defining the output is to create a template file with the name of “clientarea.tpl” within your

module folder which if found will then be loaded and displayed in place of the ClientArea

function.

The template file will be called with all the same module parameters as other functions get

defined and ready to use as smarty template variables so if you want to make the client area

output of your module customisable then using the template method is the perfect way to

do it.

Actions/Events

Quite often you might want to have buttons or links in the output of your module that can

do various things. One very simple way of doing this is to link back to the product details

page that the client is already on with an additional var in the request, and then to check for

the existence of that var within your template code. For example:

WHMCS | Provisioning Module Documentation 12

An alternative solution is using custom functions which we will look at now.

WHMCS | Provisioning Module Documentation 13

Custom Functions

Custom functions allow you to define additional operations that can be performed using the

module. The custom functions can do anything you want, and return either a success or

failed response. Permission can then be granted for who can use each custom function, be

it just clients, just admins, or both.

The naming convention for custom functions follows the same as any other function within

a module so it must begin with the module filename, followed by an underscore, and then

the custom function name.

The easiest way to demonstrate this is with an example so let’s take an example of a reboot

& shutdown function in the case of a module for a VPS system:

In the above you can see how the custom functions are defined, being passed all the same module

parameters as all other functions, & returning either “success” for a success or an error message to

indicate a failure. Now let’s say we wanted to allow clients to perform reboots, but only admin users

to be able to perform a shutdown, here’s how we would define that:

WHMCS | Provisioning Module Documentation 14

What we are saying here is that clients are allowed perform the “reboot” function, but admins can

perform both “reboot” and “shutdown”.

The text that’s the key part of the array is what’s displayed on the button in the row of module

command buttons to an admin user, and the value is the custom function name excluding the

modulename_ prefix.

So now all that’s left is to give the client the option to perform the custom function from the client

area, and for that we go back to the previous section on Client Area Output. You must output a

button linking to invoke the custom module for this and an example of how to do this is as follows:

Where “a” in the above form post is the custom module function to run.

WHMCS | Provisioning Module Documentation 15

Additional Client Area Pages

A feature which is available from WHMCS V4.2 and later is the ability to create custom client

area pages from within a module.

This is done using the custom function methods above, but instead of performing a function

and simply returning success or an error, you instead return an array defining the

parameters for the page.

The array has to contain a template filename to display, a breadcrumb path showing the

end user where they are, and any additional template variables that you want to define

such as the results of API calls to be used within the custom template.

The custom template name you define is read from within the module folder (not the active

client area template folder).

An example of calling a template file named “example.tpl” is below:

A custom page defined in this way is linked to in exact the same way as calling a custom

function. So within the client area output you would need to include a button or link with

the modop specified as “custom” and the a variable set to the name you give that function,

in this case “extrapage”.

WHMCS | Provisioning Module Documentation 16

The UsageUpdate Function

The UsageUpdate function can be used to perform a daily import of the disk and bandwidth

usage for accounts from a server. The data imported is then used to display the usage stats

both within the client and admin areas of WHMCS, and also in disk and bandwidth overage

billing calculations if enabled for a product.

Admin Area Example

The UsageUpdate function is called by the daily cron if present in a module, for any active

and enabled server, on a per server basis (important: it is called per server not per product).

Therefore this can only be used if your module has a server created in WHMCS for it,

products alone do not invoke it.

The function is passed the id, ip, hostname, username/hash, & password variables and is

then expected to query the disk and bandwidth stats for all accounts on that server, and

update them within the database directly all in a single call for speed and efficiency. An

example of how to do this is included below.

WHMCS | Provisioning Module Documentation 17

Admin Services Tab

Available in WHMCS V4.3 and later, the Admin Services Tab functions of a module allow you

to define additional fields that should appear on the product details page of the admin area

for staff use. These can be used just for informational output, or for settings and values

stored in custom tables or remotely outside of WHMCS.

An example of what we use it for in the core WHMCS system is for our licensing addon

module, where the license specific fields of the allowed domains, IPs and Directory can then

be viewed and set from the product details view.

There is both an AdminServicesTabFields and AdminServicesTabFieldsSave function

supported in the modules, with the former allowing you to define the additional fields to

output, and the latter allowing you to handle any input in them on submission/save.

So on to an example, below we show you how you could define 4 extra fields that would

show an input field, dropdown, textarea and info only output as examples, and then update

them in a custom table of the database via the save event.

WHMCS | Provisioning Module Documentation 18

Database Queries

You will have seen in various examples throughout these docs the use of database queries

within module functions.

In all module functions, there will always already be an active connection to the WHMCS

database. And you can run custom queries to obtain any additional data you need, or

update/alter and data you need to using that connection without needing to connect

through any custom code.

That can be done using the regular PHP/MySQL mysql_query() function or using the helper

functions we have in WHMCS of select_query, update_query, insert_query which we’ll

provide a brief overview of below.

Select Queries

A select query is run as follows, with anything after the $where variable being optional. The

$table should be the table name, $fields a comma separated list of fields to select, the

$where var should be an array of criteria, $sort can be a field name to order by, $sortorder

either ASC or DESC, $limits a range to select eg “0,1” “10,20” etc… and finally $join can be

used for performing an inner join with another table.

So for an example:

$table = “tblclients”;

$fields = “companyname,address1,city”;

$where = array(“id”=>$userid);

$result = select_query($table,$fields,$where,$sort,$sortorder,$limits,$join);

$data = mysql_fetch_array($result);

$val1 = $data[0];

$val2 = $data[1];

Update Queries

An update query can be run as follows, accepting a table name, array of fields to update,

and a where clause for the criteria.

WHMCS | Provisioning Module Documentation 19

$table = “tblclients”;

$array = array(“companyname”=>”Test”);

$where = array(“id”=>$userid);

update_query($table,$array,$where);

Insert Queries

Insert queries are the simplest of them all requiring just the table name and an array of

fields to insert. But it will return for you the ID of the newly created entry. So for example:

$table = “tblclients”;

$array = array(“firstname”=>”x”,”lastname”=>”y”,”companyname”=>”z”);

$newid = insert_query($table,$array);

WHMCS | Provisioning Module Documentation 20

Additional Resources

Here are some additional resources from our Developer Resources @

http://docs.whmcs.com/Developer_Resources that you might find useful when developing

your module.

• Internal API

This allows you to call various WHMCS functions and actions from within your

module code and hooks

http://docs.whmcs.com/API:Internal_API

• Action Hooks

Action hooks allow you to hook into various events inside WHMCS and perform your

own custom code as they occur

http://docs.whmcs.com/Hooks

• Addon Modules

Addon modules allow you to create modules that contain both admin area pages &

output, as well as hook files

http://docs.whmcs.com/Addon_Modules

• Creating Pages

If you want to create custom pages for the client area then this shows you how

http://docs.whmcs.com/Creating_Pages

• External API

The allows you to call various WHMCS functions and actions from custom files and

code outside of WHMCS

http://docs.whmcs.com/API

